Through the more than one hundred fifty years that the Santa Monicas have been under American control, the pace of change has accelerated drastically. Whereas an estimated thirteen hundred Chumash and Tongva were living in the Santa Monicas prior to the Spanish era, there are now hundreds of thousands of people living in the mountains today.

There is much to lament, from the approval of insensitive developments in pristine areas that have occasionally required heroic fire-fighting efforts, to the loss of the once prodigious run of sweetbread through Malibu Creek and other Santa Monica Mountains watersheds due to stream degradation. None of these issues can be ignored and certainly there are places in the Santa Monicas where the natural world has been all but overwhelmed.

But as often as one might feel a deep sense of loss and regret when standing along a steep, freeway-wide road climbing from the valley virtually to the high ridgeline to service a gated community of multi-million-dollar homes, there are still places where the mountains feel as fresh as they did to the earliest travelers and settlers.

Serrano Canyon sits on the western end of the range in the Buny Mountain State Wilderness. To the northeast, the jagged volcanic rock of three-thousand-foot-tall Boney Ridge looms more than twenty-five hundred feet above the sloping valley. Hilltops of chaparral surround the valley’s grasslands, which in spring come alive in a palette of infinite greens. A riparian corridor of oak, willow and sycamore cuts across the valley. There are no buildings, just the remnants of a ranch less notable for its age than the fact of its demise.

Set down behind a peak that rises to fourteen hundred feet in less than two miles from the ocean, the valley is cut off from the nearby Pacific. The valley is hidden but the ocean still finds it as fog begins to drift through a canyon opening and curls over the high ridge in a slow-motion cascade.

The fog is the only thing that intrudes from beyond the valley. There’s no hint of the motorcyclists and commuters racing up and down Pacific Coast Highway. The sensation is the same as that described by author William H. Brewer almost one hundred fifty years earlier when he stopped at a spot nearby in the Santa Monicas: “A feeling of awe came over me. Around me rose rugged mountains; no human being was within miles of me to break the silence.”
Fire resets the clock in the Santa Monicas. If a fire has been contained, that patch of five or ten or one hundred acres will appear different in color and texture from adjacent areas for years to come. That is at least until the entire section of the mountains goes up in flames and it's back to midnight for thousands of acres, such as when the 1993 Old Topanga Fire burned Cold Creek and 16,516 acres from the edge of Calabasas to the sea. What began as a thin plume of smoke turned into a billowing, constantly morphing cloud of reds, oranges, grays and black reminiscent of an erupting volcano.

The mountains' east-west orientation is uniquely vulnerable to Southern California's famed Santa Ana winds. In contrast with the range’s prevailing pattern of winds off the ocean, Santa Ana originate in the desert, then get channeled down the range's northern canyons, sucking moisture from vegetation, warming and increasing its speed as they go. Santa Anas are primarily an autumn event, and correspondingly the average rate of acreage burned is significantly higher in September, October and November. Just as chapparal has its counterparts in other Mediterranean regions, so do Santa Ana winds, and their names too are both poetic and menacing: scirocco, mistral and bora.

Chapparal, mature chapparal and an ignition source, and a configuration will soon follow. Chapparal burns with an almost unimaginable intensity. Thanks to the density of vegetation and the heavy oil content, surface temperatures can reach twelve hundred degrees. That means chapparal fires are four times hotter than grassland fires, which only tells part of the story. When measured for the amount of energy released, chapparal fires are actually eighty times more intense. And while experts describe such fires as the 1988 Yellowstone blaze as once-in-five-hundred-years events, in the Santa Monicas it can be more like once in a decade. Fires have struck some areas of Malibu eight times since 1925 and during that time an estimated three hundred thousand acres have burned in a range that encompasses roughly two hundred twenty thousand acres. Seventy thousand acres have gone up in flames since 1990 alone.

“Chaparral is a true design for disaster,” concluded a 1990 California Coastal Commission study.

As adapted to fire as the Santa Monicas may be and as sudden as the range is for its configurations, the rate of fires once was considerably lower (and even today there are scattered places that have managed to escape major blazes for one hundred years). The Chumash deliberately burned sections of the mountains to increase production of their food sources; studies indicate that they may have used as many as two hundred plans for food, and fire also increased forage for deer and other animals that the Chumash hunted. But the overall frequency of fire was considerably lower than during modern times because of the lack of ignition sources, which is to say a growing population of human beings engaged in activities from construction to pyromania; a huge percentage of Santa Monica fires result from arson.

Lightning, the most likely natural source, is rare in the Santa Monicas and when it does occur it is typically accompanied by rain, therefore reducing chances for fire. Lightning certainly occurs less frequently than in the San Gabriels and other fire-prone Southern...
California ranges and according to National Park Service studies, no lightning-caused fires occurred in the Santa Monicas over a sixty-year period. Nor did lightning-caused fires burn with the kind of intensity of many modern-day fires primarily because lightning conditions and Santa Anas are mutually exclusive. Instead the fires typically burned for weeks, moving slowly across the landscape.

In many respects, the celebrated fires of the Santa Monicas are a hybrid of natural and cultural phenomena. For one thing, the significance of fires, at least in the public imagination, is not a function of acreage or habitat burned. There have been so many massive fires that size alone doesn’t equal notoriety. Acreage is not a measure but the number of homes lost is, trumping even lives lost.

The 1961 Bel-Air fire which destroyed nearly five hundred homes is part of the city’s popular mythology. It is to other Santa Monica Mountains fires what the Academy Awards are to the People’s Choice Awards. The fire’s perimeter encompassed the heart of celebrity Los Angeles, from Mulholland Drive on the north to Sunset Boulevard on the south and Benedict Canyon on the east to Sullivan Canyon on the west. The Los Angeles Times showed Kim Novak hosing down her home’s roof, and Zsa Zsa Gabor dug through the rubble of her four-hundred-thousand-dollar home while wearing a forty-carat diamond ring. The paper described the fire’s victims who took shelter in both Red Cross facilities and Beverly Hills hotels as “the wealthiest class of evacuees since the Russian revolution.”

Although one news account described the Santa Anas that helped fan the November 1993 Old Topanga Fire as having “the capricious will of the mythological
furies for all their intensity, fires in the Santa Monicas tend to be ritualized in their sequence of events: the Santa Ana starts blowing; a fire starts at an inland spot in the mountains; the flames are blown toward the ocean through canyons and follow nearly identical routes of previous blazes; evacuations take place; and firefighters make a heroic last stand at Pacific Coast Highway. And at the beach, deer, bears and other animals that had fled to the coast ahead of the fire and residents all mingle at the edge of the ocean as the fire rages.

By most accounts the Old Topanga Fire was faster and more furious than almost any fire in the range's history. With relative humidity as low as seven percent, the fire spread from an acre to two hundred acres in ten minutes and burned a thousand acres within the first hour. Smoke rose thirty thousand feet into the sky and embers touched off new fires more than two and a half miles in advance of the fire. When the fire approached, houses trembled as if an earthquake was occurring before bursting into flames like matches, according to one firefighter. The fire eventually destroyed thirty buildings, more than ten percent of the total number of structures determined to be at risk by fire managers when the blaze started. During one twenty-eight-minute stretch in mid-afternoon, the fire consumed twenty-two hundred acres, a rate of seventy-five acres per minute and flames reached PCH within four hours of the first reports of smoke.

Except for post-fire coverage of the mudslide threat when rains come, the mountains themselves receive little attention. The land is blackened and trees are charred. Virtually every bit of greenery is gone, and boulders and rock faces long covered by chaparral are exposed. The very structure of the mountains is revealed again. A layer of ash covers mountain neighborhoods and sometimes incinerated leaves of manzanita and other plants drift into yards miraculously intact only to pulverize at the slightest touch.

It's difficult to imagine new life springing from so much devastation but the recovery begins almost immediately. Even as the dust continues to burn, fire beetles, drawn by heat and smoke that senses on their thoraxes detect, fly to the blaze from miles away. They come to the scene to feed on plant tissue no longer protected by sap and to mate. The females lay their eggs in burnt wood, which provides a food source for the larvae. Within days after the fire, the charred and coastal sage scrub communities begin their recovery. Leaves emerge from the singed trunks of coast live oaks and although everything above the surface has been charred, shrubs such as laurel sumac survive underground and re-sprout directly from their root crown buds. One of the most beautiful sights in the mountains is the play of clusters of fresh green leaves growing from the base of a charred branch against the blackened landscape as chaparral plants come back to life. Not only are there benefits for the plant community but for the surviving wildlife too.

The productivity of chaparral, in terms of forage, can go down as the stand ages but its new growth is high in protein and considerably more nutritious for deer and other animals.

Despite the intensity and ferocious heat of wildfires, temperatures even a few inches down are considerably cooler, allowing both plants and seeds to survive. The seeds of many plants, including chamise and ceanothus, require fire to germinate; some need exposure to at least two-hundred-fifty-degree temperatures while others respond to chemical cues from smoke and
burnt wood. The heat or chemicals rupture the waxy coating of the seeds, so that when rains come the seeds' contents are exposed to water and the growth process begins. What is also remarkable is that seeds can remain viable for decades until they receive the proper stimuli.

By the following spring, assuming there have been decent rains, the land comes alive in ways unimaginable—either before or after the fire. With the canopy of shrubs no longer there to block the sun, a host of flowers, some that haven't been seen for generations, color the land; following the Old Topanga Fire, a species of phacelia emerged in one mountain area that hadn't burned for at least a century. The display is made more beautiful because the carpet of flowers surround the twisting, blackened stems of chaparral plants in a tableau of death and rebirth akin to a resurrection. Patches of Parry's phacelia, their deep purple petals made even more vivid by a white speckled center, paint slopes and play off the reds of Indian pink and the orange of California poppies. Less common is the brick-red fire poppy, which appears almost exclusively after fires.